

GIBBERELLIN A₁₂ AND GIBBERELLIN A₁₂-7-ALDEHYDE AS ENDOGENOUS COMPOUNDS IN DEVELOPING SEEDS OF *PISUM SATIVUM*

YU-XIAN ZHU, PETER J. DAVIES and ANNA HALINSKA

Section of Plant Biology, Cornell University, Ithaca, N. Y. 14853, U.S.A.

(Revised received 11 April 1988)

IN MEMORY OF TONY SWAIN, 1922-1987

Key Word Index—*Pisum sativum*; Leguminosae; gibberellin A₁₂; gibberellin A₁₂-aldehyde; gas chromatography-mass spectrometry; isotope ratios; seed; pea.

Abstract—While gibberellin (GA) A₁₂ and GA₁₂-7-aldehyde have been well established as intermediates in GA biosynthesis, their presence in higher plants has not been conclusively demonstrated, with the exception of GA₁₂-aldehyde in mature pea seeds. High specific activity [¹⁴C] GA₁₂ and [¹⁴C]GA₁₂-aldehyde were synthesized enzymatically from [4, 5-¹⁴C]mevalonic acid, using a pumpkin endosperm preparation, and purified by HPLC. These were added to developing pea seeds during homogenization and the radioactive material purified by HPLC. Mass spectra of GA₁₂ and GA₁₂-aldehyde were obtained following gas chromatography. The ratio of the ¹²C to ¹⁴C mass ions for the radio-labelled GAs, and the seed extract with added radio-labelled GAs as internal standards, was examined. There was a 123 and a 579% enrichment of the ¹²C present in the GA₁₂ and GA₁₂-aldehyde spectra, respectively, relative to ¹⁴C, proving the presence of endogenous GA₁₂ and GA₁₂-aldehyde in the developing pea seeds. The amounts present were very low, namely 1.2 ng/g fresh weight for GA₁₂ and 8.4 ng/g fresh weight for GA₁₂-aldehyde.

INTRODUCTION

Giberellin A₁₂ (GA₁₂) was initially discovered in the fungus *Gibberella fujikuroi* [1]. Numerous studies on the biosynthesis of gibberellins (GAs) have indicated that GA₁₂-7-aldehyde is the first gibberellin in the pathway and that this is then converted to GA₁₂ [2, 3]. The identification of both GA₁₂ and GA₁₂-aldehyde has come mainly from analysis of intermediates of GA production in cell free systems following feeding of various precursors [3]. Actual identification of these compounds as endogenous compounds, particularly in higher plants, is rare despite their widely accepted presence on theoretical grounds as intermediates in the production of the GAs which accumulate at detectable levels. The reason for this is probably that the levels are very low because the metabolism of the compounds on to more persistent GAs is very rapid. GA₁₂ has been listed as being present in apple seed as detected by GC/MS [4] but no confirming data was given. It has also been cited as having been detected, but as 'unpublished', in *Cucurbita maxima* seeds [5] and *Oryza sativa* [6]. GA₁₂-aldehyde has only been identified in mature dry pea seeds [7]. As part of our investigation of GA content and metabolism in peas we have succeeded in conclusively showing the presence of both these GAs as native compounds in developing pea seeds.

RESULTS AND DISCUSSION

In order to conclusively detect compounds present in extremely low amounts a method of purification with

minimal loss has to be utilized. This is even more difficult with GAs as they possess no easily detectable physico-chemical characteristic such as UV adsorption. Bioassay, which is commonly used for GAs, is also useless as the amounts present are too small, and both GA₁₂ and GA₁₂-aldehyde are virtually inactive in most bioassays [8]. The approach we have taken is to add high specific activity [¹⁴C]GA₁₂ and [¹⁴C]GA₁₂-aldehyde to pea seed extracts and to follow the radio-label through the purification of the extracts [9]. The principal GAs are then subjected to GC/MS analysis and the spectra of GA₁₂ and GA₁₂-aldehyde detected. However, as even the most radioactive [¹⁴C] compound is never 100% ¹⁴C in the labelled position, but is a mixture of ¹²C and ¹⁴C species, account has to be taken of the contribution of the [¹²C] compound added together with the ¹⁴C tracer. We have done this by comparing the isotope ratios of the added tracer and the resultant tracer/endogenous GA mass spectra. Heavy isotope (e.g. ²H/³C or ¹⁵N) standards are usually used for the detection and quantitation of plant hormones using GC/MS [10] because of the high isotopic purity obtainable (usually <99%). However, due to lack of radioactivity, this method would not have succeeded in the present work because the radioactive internal standard is essential for monitoring the purification process. Thus even if the isotopic abundance of the standard is less than desirable it is still the method of choice for this work.

Gibberellin A₁₂ and GA₁₂-aldehyde were synthesized from high specific activity [4-¹⁴C, 5-¹⁴C]mevalonic acid using a cell-free preparation from pumpkin (*Cucurbita maxima*) endosperm. These GAs were then purified by HPLC. Mass spectra of the GA₁₂ and GA₁₂-aldehyde showed that they contained 70.4 and 68.5% ¹²C, giving

specific activities of 351.4 and 342.0 mCi/mmol, respectively (Table 1). These [¹⁴C]GAs (1 µCi of each) were added to 200 g of pea seed following homogenizing and the GAs purified as described below. Through each HPLC step the ¹⁴C was detected by an on-line radiomonitor that triggered a fraction collector to collect the radio-labelled material.

Separation of ²H from ¹H containing compounds during HPLC has been noted [11]. Should such separation occur in our case, enrichment in ¹⁴C would be expected, as all fractionation was made by following the radioactivity, yet enrichment was found in ¹²C rather than ¹⁴C. Also, as the separation of [¹²C] and [¹³C] compounds is minimal [12] it is likely that there would be minimal separation of the [¹⁴C] and [¹²C]GAs.

The purified GAs were methylated and repurified by HPLC prior to GC/MS. GC/MS was run in the scan mode searching for the spectra of the [¹²C] and [¹⁴C] GA₁₂ and GA₁₂-aldehyde. The higher mass spectral lines of the [¹⁴C] compounds are 16 mass units higher because eight ¹⁴C atoms are incorporated into each GA. The presence of endogenous material is clearly seen as the proportion of ¹²C changes from 42 and 46% to 94 and 312.5% of that of ¹⁴C in GA₁₂ and GA₁₂-aldehyde, respectively (Table 1). This represents a 123 and 579% enrichment, of ¹²C present in the GA₁₂ and GA₁₂-aldehyde respectively, relative to ¹⁴C, caused by the addition of plant material. This is therefore conclusive proof of the existence of endogenous GA₁₂ and GA₁₂-aldehyde in pea seed.

As the amount of [¹⁴C]GA₁₂ and GA₁₂-aldehyde added and the final isotope ratio is known, the amount of endogenous GA₁₂ and GA₁₂-aldehyde in the pea seeds can be calculated as follows:

The amounts are very low, as expected, with values of 1.2 ng/g fresh weight for GA₁₂ and 8.4 ng/g fresh weight for GA₁₂-aldehyde. This contrasts with a level of 9.5 µg/g fresh weight of GA₂₀ which has been recorded in pea seed at the same developmental stage [13]. In mature dry pea seed GA₁₂-aldehyde is present at the level of 17 ng/g fresh weight [7] which is similar to that reported in the present work when the decrease in water content of the seeds at maturation is taken into account. The GA₁₂-aldehyde in mature seeds is utilized during germination almost disappearing over the first 26 to 30 hr of germination [7]. The detection of GA₁₂-aldehyde in immature seeds indicates that it does not build up only during maturation of the seed, but is also present at earlier times of development. The level of endogenous GA₁₂-aldehyde is seven times that of GA₁₂. This is in agreement with the results of our [¹⁴C]GA₁₂-aldehyde and [¹⁴C]GA₁₂ feeding studies with peas: [¹⁴C]GA₁₂ is metabolized several times more rapidly than [¹⁴C]GA₁₂-aldehyde (J. W. Lee, P. J. Davies and A. Halinska, unpublished results) so that a lower endogenous content might be expected where GA₁₂-aldehyde is the metabolic precursor of GA₁₂.

EXPERIMENTAL

Plant material. Pea (*Pisum sativum* L.) plants of genetic line G2 [14] were grown in a peat-vermiculite mixture in 4 l plastic pots, 2 plants per pot. The seed was sown in the greenhouse and the plants transferred 1 month later to growth chambers with photoperiods of 9 hr and 20° day and 17° night temp.

[¹⁴C]GA₁₂-aldehyde and [¹⁴C]GA₁₂ synthesis and purification. All glassware used was silanized with Aquasil. [¹⁴C]GA₁₂-aldehyde and [¹⁴C]GA₁₂ were synthesized from [4-¹⁴C, 5-¹⁴C] mevalonic acid (MVA) using a cell-free system from the liquid endosperm of *Cucurbita maxima* Duchesne, cv. Big Max. Pum-

$$\text{Endogenous amount} = \frac{\text{Endogenous ion intensity}}{\text{Internal standard ion intensity}} \times \text{Amount of added internal standard}$$

$$\frac{\text{Total } ^{12}\text{C} - \text{internal standard } ^{12}\text{C ion intensities}}{\text{Internal standard } ^{12}\text{C} + \text{internal standard } ^{14}\text{C ion intensities}} \times \text{Amount of added internal standard.}$$

Using the ratios of the major ions for ¹²C/¹⁴C, i.e. *m/z* 300/316 and 241/257 for GA₁₂ and GA₁₂-aldehyde, respectively.

Table 1. Relative intensities of the high *M*, mass ions in the mass spectra of the methyl esters of aldehyde recovered from pea seeds including the added

						<i>m/z</i> (%)
[¹⁴ C]GA ₁₂ added	¹² C	328(11)	301*(26)	300(42)	285(15)	241*(27)
	¹⁴ C	344(25)	317(14)	316(100)	301*(26)	257(23)
GA ₁₂ from peaseed	¹² C	328(25)	301*(40)	300(94)	285(23)	241*(37)
	¹⁴ C	344(25)	317(12)	316(100)	301*(40)	257(22)
[¹⁴ C]GA ₁₂ -aldehyde added	¹² C	330(6)	287(16)	270(21)	255*(53)	242(17)
	¹⁴ C	346(14)	303(14)	286(48)	271(20)	258(14)
GA ₁₂ -aldehyde from pea seed	¹² C	330(22)	287(23)	270(59)	255*(32)	242(27)
	¹⁴ C	346(10)	303(5)	286(21)	271(26)	258(4)

The relative intensity of each ion, as per cent of the major ion, is given in parentheses after the ion ratio of the major ion for ¹²C and ¹⁴C.

*Mass ion occurs in both ¹²C and ¹⁴C spectra.

pink fruits with the correct colour were sampled *in situ* to estimate the stage of seed development, and were harvested at 20% of the maximum cotyledon length, the stage reported to have the most activity [15]. Cell-free extracts and reactions with MVA were prepared essentially as ref. [15]. Extraction was done with 1 vol. of buffer A (40 mM HEPES, 0.6 M mannitol, 2.5 mM MgSO₄, 1 mM dithiothreitol, and 1 g/l BSA adjusted to pH 8.0 with KOH) per vol. of endosperm. Dialysis was 3 x against about 25 vol. of buffer A without BSA for 1, 0.75 and 0.75 hr. The volume of endosperm recovered was 104 ml to give a total enzyme extract of 280 ml. Per ml of reaction mixture, 0.65 ml of enzyme was mixed with 0.05 ml of 0.1 M K-Pi buffer pH 6.2 and with 0.2 ml of cofactor stock solns to give the following final concentrations: ATP 3.0 mM; NADPH 0.5 mM; NADH 0.5 mM; FAD 0.5 μ M; FMN 0.5 μ M; MnCl₂ 1.0 mM; MgSO₄ 5.0 mM. Prior to adding enzyme, the pH of the mixture of cofactors and buffer was adjusted to 6.2 (with 0.5 M KOH). Then the pH of the reaction mixture was adjusted to 6.9 (with 0.5 M HCl) and the vol. of reaction mixture made up to the designated vol. with H₂O (including vol. of the added mevalonic acid). The incubation mixtures were kept on ice until addition of [¹⁴C]MVA to a final concn of 100 μ M. [4-¹⁴C, 5-¹⁴C] MVA lactone (sp. act. 110 mCi/mM) was custom synthesized by Amersham and was converted to free MVA prior to addition by evapg the toluene solvent from the MVA lactone, adding 100 μ l (excess) 28% NH₄OH, hydroxide, heating at 50° for 1 hr, and evapg off the NH₄OH *in vacuo*. Reaction vessels (250 ml polypropylene bottles) were shaken at room temp. (ca 22°) for 5 hr. At the end of incubation period the reaction mixture was stopped by addition of Me₂CO to give a final concn of 75%, and stored at -80° until used.

To remove the large amount of unconverted MVA and other polar products, the reaction mixture was subjected to charcoal-celite adsorption chromatography. Charcoal:celite (10g:20g) (with a void volume of 50 ml) was used per 100 ml of final dialysed extract, in a 2.5 cm wide glass column. The charcoal-celite was prewashed with Me₂CO and then returned to 0.05 M AcOH. The reaction mixture plus Me₂CO was filtered in a Buchner funnel and the Me₂CO evapd *in vacuo*. The aq. remainder was made 0.1 M in acetic acid and loaded into the column using N₂ pres. at ca 70 kPa. The column was washed with 0.1 AcOH (100 ml) 5% Me₂CO (50 ml) and then 100% (3 l). The [¹⁴C]GA₁₂-aldehyde and [¹⁴C]GA₁₂ eluted in the 100% Me₂CO fraction. The 100% Me₂CO fraction was evapd *in vacuo*

added [¹⁴C]GA₁₂ and [¹⁴C]GA₁₂-aldehyde, and the GA₁₂ and GA₁₂-[¹⁴C]GA internal standards.

to ca 0.5 ml (aq.-from the 80% Me₂CO remaining in the column). This was transferred to a centrifugal filter tube with a 0.45 μ nylon membrane followed by 2 x 0.5 ml MeCN and 2 x 0.5 ml H₂O rinses of the flask. The sample was filtered and 10 μ l injected onto a prep. C₁₈ column (1.0 x 15 cm containing Spherisorb 2 ODS) fitted with a 5 ml injection loop, using 40 to 80% 0.1 M aq. MeCN (containing 0.05 AcOH) gradient over 20 min at 4 ml/min. The elution times of the peaks were noted using an on line radioactivity detector (Trace 7140 Packard). The major product was [¹⁴C]GA₁₂-aldehyde at R_t 16.0 min with less [¹⁴C]GA₁₂ at R_t 12.0 min. The entire sample was then run on the HPLC column disconnected from the detector, with the peaks manually collected by retention time directly at the end of the column. The [¹⁴C]GA₁₂ needed further purification on an analytical C18 column (0.4 x 25 cm), Microsorb, (Rainin) run at 1 ml/min to remove traces of the earlier peak material. The overall efficiency was 6.6% for [¹⁴C]GA₁₂ aldehyde production and purification, and 2.9% for [¹⁴C]GA₁₂ (though as only 50% of the MVA would be of the correct isomer, and therefore utilized in the reaction, the conversion from usable MVA would be twice these values).

Extraction and purification of endogenous gibberellins. Pea seed (200 g) was homogenized with an Omni-Mixer in 80% MeOH containing 10 mg/l BHT. [¹⁴C]GA₁₂ and [¹⁴C]GA₁₂-aldehyde (1 μ Ci each) were added to the homogenate which was stirred overnight at 4°. After filtration the extract was divided into two and evapd to ca 50 ml at 33° *in vacuo*. The pH was adjusted to ca pH 8 with 0.01 M NH₄OH, and the extract filtered through 2 cm of PVP in a Gooch crucible, followed by a wash with 20 ml H₂O. The filtrate was acidified to pH 3 with HCl, filtered and passed through a charcoal-celite column (15 g charcoal: 30 g celite). The column was rinsed with 0.01 N HOAc followed by 1.5 l Me₂CO. The material eluted from the column with 100% Me₂CO was evapd to less than 5 ml *in vacuo* at 33° then centrifuged through a glass fiber prefilter and a nylon 66 membrane filter (pore size 0.45 μ m) prior to HPLC.

HPLC. Samples were injected onto an analytical C₁₈ HPLC column [5 μ m Microsorb 4.6 x 250 mm (Rainin)] using a 5 ml injection loop. The column was eluted with H₂O-MeCN (both containing 0.1 M AcOH) gradient as follows: 0 to 20% over 2 min; 20 to 35% over 15 min; 35 to 75% over 15 min; 75 to 100% over 2 min and holding at 100% MeCN for 5 min before returning, re-equilibration with 0.1 M AcOH and rerunning. The column eluate was passed through the on line radioactivity

240(22)	239(4)	225(9)	% ¹⁴ C = 70.4%
256(24)	255(11)	241*(27)	sp.act. = 351.4 mCi/mMol
240(20)	239(20)	225(17)	% ¹⁴ C = 51.5%
256(23)	255(11)	241*(37)	sp.act. = 257.1 mCi/mMol
241(46)	239(14)	227(11)	% ¹⁴ C = 68.5%
257(100)	255(53)	243(17)	sp.act. 342.0 mCi/mMol
241(100)	239(24)	227(17)	% ¹⁴ C = 24.2%
257(32)	255*(32)	243(5)	sp.act. = 120.8 mCi/mMol

mass/charge ratio. The % ¹⁴C and specific activity are calculated from the

monitor with the data recorded as counts per each 12 sec interval at an efficiency of *ca* 10%. Fractions containing radioactive material were collected separately. The radioactive peaks were then rerun on the same column in 55 and 65% aq. MeCN (with 0.1 M AcOH) for GA₁₂ and GA₁₂-aldehyde, respectively, and the radio-labelled peaks collected. The labelled peaks were dried down *in vacuo* at 33°, redissolved in 0.3 ml MeOH, methylated with 2–3 vol of ethereal CH₂N₂, dried down under N₂, and subjected to further purification by isocratic HPLC in 70 and 80% aq. MeCN (with 0.1 M AcOH) for GA₁₂ and GA₁₂-aldehyde, respectively. The peaks co-eluting with the radio-labelled markers were collected, dried down *in vacuo* at 33°, transferred with MeOH to 100 µl glass tubes held in a larger capped glass vial, and taken to dryness under N₂ and then *in vacuo* over P₂O₅.

GC/MS analysis. GC/MS analyses were done with a Hewlett Packard 5890A gas chromatograph connected to a 5970B mass selective detector and equipped with an HP 9133 computer. Samples were each dissolved in 1.5 µl MeOH and injected (splitless) onto a 12.5 m × 0.2 mm HPI (methyl silicone) bonded phase silica capillary column with a helium flow rate of *ca* 35 cm/sec. After injection, the temp. was maintained at 105° for 1 min, then programmed at 30° min⁻¹ to 210°, 4° min⁻¹ to 220°, 1.0° min⁻¹ to 240° and finally 10° min⁻¹ to 275°. The scan mode was used from 100 to 400 mass units at 1.43 scans per sec with an ionizing energy of 70 eV. GA₁₂ had an *R*_t of 10.5 min and GA₁₂-aldehyde had *R*_t 10.1 min.

Acknowledgements— We thank Paul Birnberg for assistance with the synthesis of the [¹⁴C]GAs, providing spectra (originally obtained from J. MacMillan via R. C. Durley) and helpful discussions, and Jake MacMillan for a sample of GA₁₂. This research was supported by grant No. DMB-8304542 from the United States National Science Foundation. The GC/MS used in this research was funded by the U.S. National Science

Foundation (Grant No. DMB8505974) and the New York State College of Agriculture and Life Sciences at Cornell University.

REFERENCES

1. Cross, B. E. and Norton, K. (1965) *J. Chem. Soc.* 1570.
2. Sponsel, V. M. (1987) in *Plant Hormones and Their Role in Plant Growth and Development* (Davies, P. J., ed.), p. 43. Martinus Nijhoff, Dordrecht.
3. Graebe, J. E. (1987) *Ann. Rev. Plant Physiol.* **38**, 419.
4. Hoard, G. V. (1978) *Acta Horticulturae* **80**, 93.
5. Bearder, J. R. (1980) in *Hormonal Regulation of Development I Encyclopedia of Plant Physiology*. (MacMillan, J., ed.) Vol. 9, p. 9. Springer, Berlin.
6. Takahashi, N., Yamaguchi, I. and Yamane, H. (1986) in *Chemistry of Plant Hormones* (Takahashi, N., ed.), p. 57. CRC Press, Boca Raton.
7. Graebe, J. E. (1986) in *Plant Growth Substances 1985* (Bopp, M., ed.), p. 74. Springer, Berlin.
8. Reeve, D. R. and Crozier, A. (1975) in *Gibberellins and Plant Growth* (Krishnamoorthy, H. N., ed.), p. 35. Wiley Eastern, New Delhi.
9. Maki, S. L., Brenner, M. L., Birnberg, P. R., Davies, P. J. and Krick, T. P. (1986) *Plant Physiol.* **81**, 984.
10. Horgan, (1987) in *Plant Hormones and Their Role in Plant Growth and Development* (Davies, P. J., ed.), p. 222. Martinus Nijhoff, Dordrecht.
11. Brown, B. H., Neill, S. J. and Horgan, R. (1986) *Planta* **167**, 421.
12. Cohen, J. D., Baldi, B. G. and Slovin, J. P. (1986) *Plant Physiol.* **80**, 14.
13. Frydman, V. M., Gaskin, P. and MacMillan, J. (1974) *Planta* **118**, 123.
14. Marx, G. A. (1968) *BioSci.* **18**, 505.
15. Birnberg, P. R., Maki, S. L., Brenner, M. L., Davis, G. C. and Carnes, M. G. (1986) *Anal. Biochem.* **153**, 1.